hbase性能调优,如何避免HBase写入过快引起的各种问题

首先我们简单回顾下整个写入流程

client api ==> RPC ==>  server IPC ==> RPC queue ==> RPC handler ==> write WAL ==> write memstore ==> flush to  filesystem

整个写入流程从客户端调用API开始,数据会通过protobuf编码成一个请求,通过scoket实现的IPC模块被送达server的RPC队列中。最后由负责处理RPC的handler取出请求完成写入操作。写入会先写WAL文件,然后再写一份到内存中,也就是memstore模块,当满足条件时,memstore才会被flush到底层文件系统,形成HFile。


一、服务端调优

当写入过快时会遇见什么问题?

写入过快时,memstore的水位会马上被推高。
你可能会看到以下类似日志:

RegionTooBusyException: Above memstore limit, regionName=xxxxx ...

这个是Region的memstore占用内存大小超过正常的4倍,这时候会抛异常,写入请求会被拒绝,客户端开始重试请求。当达到128M的时候会触发flush
memstore,当达到128M *
4还没法触发flush时候会抛异常来拒绝写入。两个相关参数的默认值如下:

hbase.hregion.memstore.flush.size=128M
hbase.hregion.memstore.block.multiplier=4

或者这样的日志:

regionserver.MemStoreFlusher: Blocking updates on hbase.example.host.com,16020,1522286703886: the global memstore size 1.3 G is >= than blocking 1.3 G size
regionserver.MemStoreFlusher: Memstore is above high water mark and block 528ms

这是所有region的memstore内存总和开销超过配置上限,默认是配置heap的40%,这会导致写入被阻塞。目的是等待flush的线程把内存里的数据flush下去,否则继续允许写入memestore会把内存写爆

hbase.regionserver.global.memstore.upperLimit=0.4  # 较旧版本,新版本兼容
hbase.regionserver.global.memstore.size=0.4 # 新版本

当写入被阻塞,队列会开始积压,如果运气不好最后会导致OOM,你可能会发现JVM由于OOM
crash或者看到如下类似日志:

ipc.RpcServer: /192.168.x.x:16020 is unable to read call parameter from client 10.47.x.x
java.lang.OutOfMemoryError: Java heap space

HBase这里我认为有个很不好的设计,捕获了OOM异常却没有终止进程。这时候进程可能已经没法正常运行下去了,你还会在日志里发现很多其它线程也抛OOM异常。比如stop可能根本stop不了,RS可能会处于一种僵死状态。


 1、参数配置

如何避免RS OOM?

一种是加快flush速度:

hbase.hstore.blockingWaitTime = 90000 ms
hbase.hstore.flusher.count = 2
hbase.hstore.blockingStoreFiles = 10

当达到hbase.hstore.blockingStoreFiles配置上限时,会导致flush阻塞等到compaction工作完成。阻塞时间是hbase.hstore.blockingWaitTime,可以改小这个时间。hbase.hstore.flusher.count可以根据机器型号去配置,可惜这个数量不会根据写压力去动态调整,配多了,非导入数据多场景也没用,改配置还得重启。

同样的道理,如果flush加快,意味这compaction也要跟上,不然文件会越来越多,这样scan性能会下降,开销也会增大。

hbase.regionserver.thread.compaction.small = 1
hbase.regionserver.thread.compaction.large = 1

增加compaction线程会增加CPU和带宽开销,可能会影响正常的请求。如果不是导入数据,一般而言是够了。好在这个配置在云HBase内是可以动态调整的,不需要重启。

  
1)、hbase.regionserver.handler.count:该设置决定了处理RPC的线程数量,默认值是10,通常可以调大,比如:150,当请求内容很大(上MB,比如大的put、使用缓存的scans)的时候,如果该值设置过大则会占用过多的内存,导致频繁的GC,或者出现OutOfMemory,因此该值不是越大越好。

上述配置都需要人工干预,如果干预不及时server可能已经OOM了,这时候有没有更好的控制方法?
hbase.ipc.server.max.callqueue.size = 1024 * 1024 * 1024 # 1G

直接限制队列堆积的大小。当堆积到一定程度后,事实上后面的请求等不到server端处理完,可能客户端先超时了。并且一直堆积下去会导致OOM,1G的默认配置需要相对大内存的型号。当达到queue上限,客户端会收到CallQueueTooBigException 然后自动重试。通过这个可以防止写入过快时候把server端写爆,有一定反压作用。线上使用这个在一些小型号稳定性控制上效果不错。

阅读原文

 

  2)、hbase.hregion.max.filesize 配置region大小,0.94.12版本默认是10G,region的大小与集群支持的总数据量有关系,如果总数据量小,则单个region太大,不利于并行的数据处理,如果集群需支持的总数据量比较大,region太小,则会导致region的个数过多,导致region的管理等成本过高,如果一个RS配置的磁盘总量为3T*12=36T数据量,数据复制3份,则一台RS服务器可以存储10T的数据,如果每个region最大为10G,则最多1000个region,如此看,94.12的这个默认配置还是比较合适的,不过如果要自己管理split,则应该调大该值,并且在建表时规划好region数量和rowkey设计,进行region预建,做到一定时间内,每个region的数据大小在一定的数据量之下,当发现有大的region,或者需要对整个表进行region扩充时再进行split操作,一般提供在线服务的hbase集群均会弃用hbase的自动split,转而自己管理split。

 

  3)、hbase.hregion.majorcompaction:配置major合并的间隔时间,默认为1天,可设置为0,禁止自动的major合并,可手动或者通过脚本定期进行major合并,有两种compact:minor和major,minor通常会把数个小的相邻的storeFile合并成一个大的storeFile,minor不会删除标示为删除的数据和过期的数据,major会删除需删除的数据,major合并之后,一个store只有一个storeFile文件,会对store的所有数据进行重写,有较大的性能消耗。

 

  4)、hbase.hstore.compactionThreshold:HStore的storeFile数量>=
compactionThreshold配置的值,则可能会进行compact,默认值为3,可以调大,比如设置为6,在定期的major
compact中进行剩下文件的合并。

  5)、 hbase.hstore.blockingStoreFiles:HStore的storeFile的文件数大于配置值,则在flush
memstore前先进行split或者compact,除非超过hbase.hstore.blockingWaitTime配置的时间,默认为7,可调大,比如:100,避免memstore不及时flush,当写入量大时,触发memstore的block,从而阻塞写操作。

 

  6)、hbase.regionserver.global.memstore.upperLimit:默认值0.4,RS所有memstore占用内存在总内存中的upper比例,当达到该值,则会从整个RS中找出最需要flush的region进行flush,直到总内存比例降至该数限制以下,并且在降至限制比例以下前将阻塞所有的写memstore的操作,在以写为主的集群中,可以调大该配置项,不建议太大,因为block
cache和memstore
cache的总大小不会超过0.8,而且不建议这两个cache的大小总和达到或者接近0.8,避免OOM,在偏向写的业务时,可配置为0.45,memstore.lowerLimit保持0.35不变,在偏向读的业务中,可调低为0.35,同时memstore.lowerLimit调低为0.3,或者再向下0.05个点,不能太低,除非只有很小的写入操作,如果是兼顾读写,则采用默认值即可。

 

  7)、hbase.regionserver.global.memstore.lowerLimit:默认值0.35,RS的所有memstore占用内存在总内存中的lower比例,当达到该值,则会从整个RS中找出最需要flush的region进行flush,配置时需结合memstore.upperLimit和block
cache的配置。

 

  8)、file.block.cache.size:RS的block
cache的内存大小限制,默认值0.25,在偏向读的业务中,可以适当调大该值,具体配置时需试hbase集群服务的业务特征,结合memstore的内存占比进行综合考虑。

 

  9)、hbase.hregion.memstore.flush.size:默认值128M,单位字节,超过将被flush到hdfs,该值比较适中,一般不需要调整。

 

  10)、hbase.hregion.memstore.block.multiplier:默认值2,如果memstore的内存大小已经超过了hbase.hregion.memstore.flush.size的2倍,则会阻塞memstore的写操作,直到降至该值以下,为避免发生阻塞,最好调大该值,比如:4,不可太大,如果太大,则会增大导致整个RS的memstore内存超过memstore.upperLimit限制的可能性,进而增大阻塞整个RS的写的几率。如果region发生了阻塞会导致大量的线程被阻塞在到该region上,从而其它region的线程数会下降,影响整体的RS服务能力,例如:

开始阻塞:

图片 1 
 解开阻塞: 
图片 2 
 从10分11秒开始阻塞到10分20秒解开,总耗时9秒,在这9秒中无法写入,并且这期间可能会占用大量的RS
handler线程,用于其它region或者操作的线程数会逐渐减少,从而影响到整体的性能,也可以通过异步写,并限制写的速度,避免出现阻塞。

 

  11)、hfile.block.index.cacheonwrite:在index写入的时候允许put无根(non-root)的多级索引块到block
cache里,默认是false,设置为true,或许读性能更好,但是是否有副作用还需调查。

 

  12)、io.storefile.bloom.cacheonwrite:默认为false,需调查其作用。

 

  13)、hbase.regionserver.regionSplitLimit:控制最大的region数量,超过则不可以进行split操作,默认是Integer.MAX,可设置为1,禁止自动的split,通过人工,或者写脚本在集群空闲时执行。如果不禁止自动的split,则当region大小超过hbase.hregion.max.filesize时会触发split操作(具体的split有一定的策略,不仅仅通过该参数控制,前期的split会考虑region数据量和memstore大小),每次flush或者compact之后,regionserver都会检查是否需要Split,split会先下线老region再上线split后的region,该过程会很快,但是会存在两个问题:1、老region下线后,新region上线前client访问会失败,在重试过程中会成功但是如果是提供实时服务的系统则响应时长会增加;2、split后的compact是一个比较耗资源的动作。

 

  14)、Jvm调整:

     
 a、内存大小:master默认为1G,可增加到2G,regionserver默认1G,可调大到10G,或者更大,zk并不耗资源,可以不用调整;

   b、垃圾回收:待研究。

 

2、其它调优

 
1)、列族、rowkey要尽量短,每个cell值均会存储一次列族名称和rowkey,甚至列名称也要尽量短,以下截图是表test2的数据和存入hdfs后的文件内容: 
图片 3 
  
图片 4 
 由上图可见:短的列族名称、rowkey、列名称对最终的文件内容大小影响很大。

 

  2)、RS的region数量:一般每个RegionServer不要过1000,过多的region会导致产生较多的小文件,从而导致更多的compact,当有大量的超过5G的region并且RS总region数达到1000时,应该考虑扩容。

 

  3)、建表时:

                   a、如果不需要多版本,则应设置version=1;

                 
 b、 开启lzo或者snappy压缩,压缩会消耗一定的CPU,但是,磁盘IO和网络IO将获得极大的改善,大致可以压缩4~5倍;

                 
c、合理的设计rowkey,在设计rowkey时需充分的理解现有业务并合理预见未来业务,不合理的rowkey设计将导致极差的hbase操作性能;

               
 d、合理的规划数据量,进行预分区,避免在表使用过程中的不断split,并把数据的读写分散到不同的RS,充分的发挥集群的作用;

                 e、列族名称尽量短,比如:“f”,并且尽量只有一个列族;

                 f、视场景开启bloomfilter,优化读性能。